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INCREMENTAL STATES FOR PRECISE ON-ORBIT RELATIVE
KNOWLEDGE IN FORMATION FLIGHT

Martin Cacan∗, Andrew Harris†, Jack Aldrich∗, David Bayard∗, Carl Seubert∗,

High precision and close proximity formation flight is an enabling technology
for future space missions and requires an on-board relative navigation capability
that is accurate to the mm-level and robust to formation parameters. Common
estimation techniques linearize the entire formation about one spacecraft’s posi-
tion, resulting in degraded accuracy due to linearization errors when separation
distances become large. Additionally, methods which decouple absolute and rel-
ative state estimates usually require ad-hoc methods to incorporate the estimates
together. This work discusses an alternative ”incremental” formulation of the rela-
tive navigation problem which is invariant to formation size, robust to coupling be-
tween absolute and relative dynamics, and can undergo similarity transformations
to smoothly incorporate either absolute or relative information without numerical
issues. A specific example of this architecture is presented in the context of for-
mation navigation using Carrier-Differential Global Positioning System measure-
ments, and is compared to a traditional leader-linearized filter. In the presence of
accurate measurements, the incremental architecture is shown to reduce lineariza-
tion errors and mean estimate errors by up to three orders of magnitude without
the incorporation of new sensor information.

INTRODUCTION

Formations of small satellites have the potential to replace monolithic structures due to their low
cost, versatility, and ability to form a distributed sensor network. For this application, new science
missions have been proposed which require tight formations (m-level separation) with accurate
control (mm-level) that is fuel-efficient for multi-year missions. One of the key components to
controlling the relative position to the mm-level and improving fuel efficiency is through accurate
estimation. In particular, relative velocity estimation errors are the largest contributor to excess
fuel consumption.1 Simple attempts to reduce fuel usage by tuning control deadbands to minimize
thruster pulsing can have the opposite effect in the presence of knowledge error and act to drive up
fuel consumption and degrade control performance.

Real-time relative estimation strategies presented in the literature vary from differenced absolute
estimates6, 14 to estimation of only the relative state by assuming the leader position is known.2, 3

Individually estimating and controlling a set of spacecraft based on prescribed relative positions is
often sufficient when high-precision is not required, such as the TerraSAR-X to TanDEM-X forma-
tion in “single-spacecraft” mode.8 This class of systems is separately classified as a constellation,
following the convention of Scharf et al.11 Relative only estimation, often leveraging the linearized
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Hill-Clohessy-Wiltshire (HCW) relative dynamics, is commonly used in rendezvous and docking as
the primary vehicle is often running an independent estimator or ground based orbit determination
to estimate its position.

The approximation of HCW dynamics for Guidance, Navigation, and Control (GNC) is not ap-
plicable to multi-year missions as fuel is spent driving the true dynamics to the linearized dynamics.
Even when the true, nonlinear dynamics are considered, using the relative dynamics only formula-
tion often linearizes the formation about the known leader. This leads to degraded performance at
large baseline separation distances. Additionally, the coupling between the leader uncertainty and
relative position uncertainty cannot be handled elegantly. This often results in uncertainty from the
leader being pushed into the follower spacecraft.

This work discusses a navigation architecture which allows the user to control (and minimize)
the linearizion error and improves the conditioning of the covariance matrix by introducing an op-
timal state transform. The navigation algorithm must only estimate the very small ”incremental
states” (incremental = actual minus nominal), where the nominal values are carefully constructed
from guidance and prior estimates. This resolves the issue associated with linearizing the formation
about the leader, as each spacecraft can be linearized about itself. The performance of the proposed
algorithm in this work is completely insensitive to the size of the “leader-follower” separation base-
line. This is an important and versatile feature of this work as it is applicable to a large range of
future science missions at Earth and beyond.

This paper is not the first to address the importance of estimating the incremental states as “devia-
tions from a known nearby reference”. GPS observables are more accurately characterized in terms
of the incremental state covariances, not the full state covariances.12 Likewise, position state esti-
mate propagation is frequently handled kinematically by using an incremental state formulation.13

In a related field of attitude estimation, the notion of known nominals and the associated incre-
mental state estimation problem is immediately obvious. For example, the multiplicative extended
Kalman filter, known as MEKF in the attitude quaternion estimation literature, propagates the small
incremental states which can be considered linear through the small angle approximation.4, 7, 10, 16

Most importantly, the concept of the incremental state is the heart of what makes the extended
Kalman filter (EKF) a powerful tool. The EKF selects the nominal as the most recent estimate, and
linearizes the system about this point to estimate the incremental deviation away from the nominal.
However, it is the point of this paper to highlight the ways in which controlling the linearization
process through incremental states prior to application of the filter can improve the filter numerics
and reduce the divergence between nonlinear state and linear covariance propagation. Additionally,
when explicitly posing the state dynamics in the incremental form, the state and Kalman filter itself
can be transformed to elegantly handle updates of the absolute or relative positions depending on
the form of the measurement.

The remainder of the paper is organized as follows. The incremental Kalman filtering approach
is presented next in a general form for application to a wide variety of nonlinear problems. After,
the paper focuses on the formation flying estimation problem by presenting the single and relative
orbital dynamics. The incremental architecture is then applied to this problem to estimate both the
leader, follower, and relative positions. Extensive results of the method are presented for varying up-
date rates and baseline separation distances. In addition, results of a more traditional ’relative only’
estimation algorithm are presented for comparison. A summary of the work and key conclusions
are presented at the end.
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INCREMENTAL ESTIMATION ARCHITECTURE

Continuous-Time Incremental Dynamics

Consider the continuous-time nonlinear plant model that is affine in control.

ẋ = f (x, t)+B(t)u+L(t)w

y = h(x, t)+M(t)v
(1)

Here, the state x ∈ Rnx , the control input u ∈ Rnu , the process noise w ∈ Rnw , and output noise
v ∈ Rnv satisfy

u = uo +us, w = wo +ws, v = vo + vs (2)

where the nominal control input uo, process noise wo, and output noise vo are known by assumption,
and may be arbitrary, finite, and time-varying in the most general setting. The incremental control
input us(t), process noise ws(t), and output noise vs(t) are zero-mean Gaussian noise processes with
covariances given by:

E[us(t)us(τ)
T ] = Puuδ (t− τ),

E[ws(t)ws(τ)
T ] = Pwwδ (t− τ),

E[vs(t)vs(τ)
T ] = Pvvδ (t− τ),

E[ws(t)us(τ)
T ] = Pwuδ (t− τ)

E[ws(t)vs(τ)
T ] = 0

E[us(t)vs(τ)
T ] = 0

(3)

Consider the change-of-variables using Equation (2) and the nominal state and output vectors, xo

and yo, respectively.

xs = x− xo

ys = y− yo

us = u−uo

ws = w−wo

vs = v− vo

(4)

Here, it is assumed that the nominal variables {xo,uo,wo,yo,vo} are known while the true variables
{x,u,w,y,v} are unknown and must be estimated using the incremental variables.

Because the nominal variables are known, the nominal process information,

f (xo, t),
[

f (x, t)
]

x=xo(t)
, A(t),

[
∂ f (x, t)

∂x

]
x=xo(t)

and the nominal output information,

h(xo, t),
[

h(x, t)
]

x=xo(t)
, C(t) =

[
∂h(x, t)

∂x

]
x=xo(t)

are known in terms of the model functionals, f (·) and h(·), which are assumed to be known exactly.

Most importantly, (1) is exactly equivalent to

ẋ = f (xo, t)+A(t)xs +B(t)(us +uo)+L(t)(ws +wo)+ fe(xs, t)

y = h(xo, t)+C(t)xs +M(t)(vs + vo)+he(xs, t)
(5)
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for any choice of nominals. Model linearization error is captured by fe(·) and he(·) which are small
when the scale of the states being estimated is also small. This provides motivation for the use of
incremental states which are small by design.

From the change-of-variables (4), taking the time-derivative of xs = x−xo yields ẋs = ẋ− ẋo, and
therefore, the incremental system dynamics are governed by

ẋs = ẋ− ẋo

ys = y− yo
(6)

where the nominal dynamics are governed by the unperturbed nonlinear system.

ẋo = f (xo, t)+B(t)uo +L(t)wo

yo = h(xo, t)+M(t)vo
(7)

Substituting Equations (5) and (7) into Equation (6) yields the incremental dynamic system.

ẋs = A(t)xs +B(t)us +L(t)ws + fe(xs, t)

ys =C(t)xs +M(t)vs +he(xs, t)

Equivalently, the incremental dynamics become

ẋs = A(t)xs +wr

ys =C(t)xs + vr
(8)

where wr is the resultant process noise, and vr is the resultant output/measurement noise given by

wr , B(t)us +L(t)ws + fe(xs, t)

vr , M(t)vs +he(xs, t)
(9)

Kalman Filtering of the Incremental System

Assume that the incremental system (8), which includes nonlinearities, is approximated by the
linear, time-varying (LTV) stochastic system,

ẋs = A(t)xs +wr

ys =C(t)xs + vr

E[wr(t)wr(τ)
T ] = Q(t)δ (t− τ)

E[vr(t)vr(τ)
T ] = R(t)δ (t− τ)

(10)

and the perturbations wr and vr are approximated by zero-mean white noise processes with covari-
ances Q and R given by

Q = BPuuBT +LPwwLT +Pf ,e

R = MPvvMT +Ph,e

Here, Pf ,e and Ph,e represent positive-definite uncertainty matrices associated with process and out-
put modeling error from linearization and unmodeled effects. It is easy to see that the these nonlin-
earities need to be kept small because they negatively impact estimator uncertainty. In other words,
these covariances are reduced when the nonlinearity itself if reduced.
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Given (10), the continuous-time Kalman Filter of the incremental state becomes:

˙̂xs = Ax̂s +K(ys−Cx̂s)

Ṗ = AP+PAT −PCTR−1CP+Q

x̂s(0) = E[xs(0)] = 0, K = PCTR−1

P(0) = E[{xs(0)− x̂s(0)}{xs(0)− x̂s(0)}T ]

(11)

where explicit time dependence, P = P(t), Q = Q(t), R = R(t), A = A(t), C = C(t) and K = K(t)
is assumed. The original state estimate x̂ is computed by summing the nominal state xo with the
incremental state estimate x̂s as

x̂ = xo + x̂s

Note that Algorithm (11) is actually the continuous-time Linearized Kalman Filter (LKF).5 Ad-
ditionally, the exact system described by Equation (1) can be estimated using a continuous-time
Extended Kalman Filter (EKF) which provides a simplified framework to reach the incremental
state. In the EFK, the nominal is set as the previous estimate and generally abstracts away the con-
cept of both the nominal and incremental states. As a result, the stability of the EKF is difficult to
prove due to the feedback of state information and the fact that performance degrades as estimates
degrade. Finally, the propagation of the dynamic equations can include known linearization errors
fe(xs, t) for improved propagation accuracy in either the LKF or EKF. The drawback is divergence
of the state and covariance propagation, as the latter must be propagated linearly.

ORBITAL DYNAMICS

Let nsc ∈ {2,3,4, ...} be the total number of spacecraft in the formation. Let F := {1,2,3, . . . ,nsc}
be the set of formation flying spacecraft identification numbers such that each agent is distinguished
from the others by its own ID. We define agent(1) as the formation Leader while agents(2 . . .nsc)
are considered Follower spacecraft. Let ri ∈ R3 be the position of agent(i) expressed in the Earth
Centered Inertial (ECI) reference frame. Let ui ∈ R3 be the control input of agent(i) expressed in
ECI frame. Let wi ∈ R3 be the disturbance input of agent(i) expressed in ECI frame. This term
is a disturbing force attributed to non-spherical Earth, third body gravity, aerodynamic drag, solar
radiation pressure, and any errors attributed to unmodeled effects. As such, the dynamics of a single
satellite around a primary body with an associated output function can be expressed generally as:

r̈i = g(ri)+ui +wi ∀i ∈ F

yi = h(ri)+ vi
(12)

where g(r) is a generalized vector-valued gravity function and h(r) is the measurement function.
For example, when an inverse square-law gravity potential is assumed, g(r) becomes

g(r) =−µ
r
‖r‖3 (13)

Incremental Dynamics

Consider the following change-of-variables to the incremental state, also shown graphically for a
formation of nsc = 2 in Figure 1.

ri = r̃i +δi ∀i ∈ F
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Figure 1: Geometric representation of incremental states.

The absolute position ri of agent(i) is separated into the nominal position r̃i, and the incremental
position δi. The nominal dynamics are governed by

¨̃ri = g(r̃i) ∀i ∈ F (14)

Observe that δ̈i = r̈i− ¨̃ri, which upon substitution of (12) and (14) yields

δ̈i = d(r̃i,δi)+ui +wi ∀i ∈ F (15)

where the gravitational drift term d(·, ·) is defined as

d(r̃i,δi), g(r̃i +δi)−g(r̃i) ∀i ∈ F

Let the gravity gradient be defined as

G(r),
∂g(r)

∂ r
(16)

which for the inverse square law gravity vector (13) becomes

G(r) =
µ

‖r‖5

(
3rrT −‖r‖2I

)
Using (16), it is easy to express (15) as

δ̈i = G(r̃i)δi +ui +wi +de(r̃i,δi) ∀i ∈ F (17)

where de(r̃i,δi) is the linearization error given by

de(r̃i,δi), d(r̃i,δi)−G(r̃i)δi ∀i ∈ F

Neglecting the nonlinearity, observe that (17) can be expressed in first order form as

żi = Γ(r̃i)zi +Λ(ui +wi) ∀i ∈ F (18)

where state zi, state transition Γ(·), and control influence map Λ are

zi ,

[
δi

δ̇i

]
, Γ(r̃i),

[
0 I

G(r̃i) 0

]
, Λ ,

[
0
I

]
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The accompanying output function (12) can also be linearized about the output of the nominal state
to yield the incremental output function.

yi = h(r̃i, t)+
∂h
∂ ri

∣∣∣
ri=r̃i

(ri− r̃i)+ vi (19)

δyi = Θ(r̃i)zi + vi (20)

where yi = ỹi + δyi. In this first order LTV incremental form, the nonlinearities are minimized by
ensuring the state zi is small as each spacecraft is linearized about its own nominal value instead of
the Leader spacecraft.

Change of Basis: Absolute and Relative Dynamics

When a formation is considered, the states of each spacecraft can be concatenated, z= [z1 . . .znsc ]
T

which describes the absolute incremental position of each spacecraft in F. The LTV dynamics of
the full formation can clearly be represented in the incremental form of Equation (8). For example,
consider the case of three spacecraft flying in formation. Then nsc = 3, and the leader/follower
relative dynamics become

ż =A(r̃1, r̃2, r̃3)z+Bu+Bw

y = C(r̃1, r̃2, r̃3)z
(21)

where nominal position vectors are inherently a function of time. The vectors {z,u,w,v} and matrix-
valued functions {A,B,C} are defined as

z ,

 z1
z2
z3

 , u ,

 u1
u2
u3

 , w ,

 w1
w2
w3



A,

 Γ(r̃1) 0 0
0 Γ(r̃2) 0
0 0 Γ(r̃3)

 , B,

 Λ 0 0
0 Λ 0
0 0 Λ

 , C,

 Θ(r̃1) 0 0
0 Θ(r̃2) 0
0 0 Θ(r̃3)


From the dynamical system and the output equations (21), the Kalman filter algorithm defined in

Equation (11) can be applied to estimate the absolute positions. When provided absolute measure-
ments, the output is equal to the state and C(t) is the identity matrix. When relative measurements
are considered such as carrier-difference GPS or inter-satellite ranging, the measurement matrix
C(t) can be chosen to subtract one state from another to output the relative state. In the example
of three spacecraft, C= [−I I 0], where I is the identity matrix, produces a relative incremental
output between the first two spacecraft. However, it is noted that there are often numerical issues
with this formulation as the conditioning of the covariance matrix degrades given precise relative
measurements. As a result, it is often best to chose states of the filter that are directly measured to
improve performance.

Instead of modifying C, it is best to modify the state and dynamics using a similarity transform.
Consider the following similarity transformation:

x = T z , A = TAT−1, B = TB, C = CT−1 (22)
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which transforms (21) into a relative dynamic form.

ẋ = A(t)x+Bu+Bw

y =C(t)x+ v
(23)

Here, T is selected by hand to convert two of the filter states from absolute to relative states. Note,
the choice of T is limited to invertible matrices.

T =

 I 0 0
−I I 0
−I 0 I

 , x = T z =

 z1
z2− z1
z3− z1


Here, x1 acts as the absolute reference for the formation and {x2,x3} describe the small, relative
displacement error, represented by {δρ12,δρ13} based on Figure 1. Note, another transformation
could have be chosen to yield a state describing δρ23. It is important to note that x is still an
incremental variable in that it is with respect to the nominal relative position. As such, linearization
errors remain small even when baseline separation distance of the formation increases.

Additionally, note that this transformation results in the new state transition matrix that has a
direct coupling between the absolute and relative states:

A(t) =

 Γ(r̃1) 0 0
Γ(r̃2)−Γ(r̃1) Γ(r̃2) 0
Γ(r̃3)−Γ(r̃1) 0 Γ(r̃3)

 (24)

Finally, it is important to note that the similarity transform can be applied at any intermediate
step in the filtering process as long as the transformation is also applied to Kalman filter matrices
{P,Q,R}. This is crucial for accurately folding in both absolute and relative measurements. Given
a formation where each spacecraft is equipped with both GPS receiver and inter-spacecraft ranging
device, the state of the filter can be transformed between sequential updates of the Kalman filter at
the same time step. This allows both absolute and relative measurements to be incorporated into
the filter with improved numerics as the measurement is always of the state being estimated. The
combination of the incremental linearization process and similarity transform provides a useful way
to incorporate a wide set of measurements and estimate a variety of similar states.

FORMATION ESTIMATION USING CARRIER-DIFFERENTIAL GPS

This section details how the incremental Kalman filtering approach is applied to the spacecraft
formation estimation problem with the goal of achieving highly-accurate relative position estimation
using Carrier-Differential GPS (CDGPS). For simplicity, the initial example of two spacecraft rep-
resented by agent(i) and agent( j) is considered. The same similarity transformation can be applied
to change the absolute incremental state vector into the relative incremental state.

z =


δi

δ̇i

δj

δ̇j

 , x=


δi

δ̇i

δj−δi

δ̇j− δ̇i

,


δi

δ̇i

δρi j

δ̇ρi j

 , x̃ =


r̃i
˙̃ri

ρ̃i j
˙̃ρ i j

 (25)
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The second order dynamics associated with the relative state vector ρi j can be found be differencing
Equation (12). For an inverse-square gravity, the relative dynamics can be defined as:

ρ̈i j =
µ

||ri||3

[
ri−
||ri||3(ri +ρi j)

||(ri +ρi j)||3

]
+∆ui j

D +∆ui j
C (26)

where ∆ui j
D(C) represents the differential disturbing (control) forces. Equation (26) can be converted

into the incremental domain following the same procedure outlined in the previous section. In this
case, the incremental relative position is taken with respect to the nominal separation, i.e. ρ =
ρ̃ + δρ . Notably, these dynamics are directly dependent on knowledge of the absolute position of
the leader spacecraft. The use of δi states on the absolute position enables this filter to estimate
the true contributions to the relative motion from displacements on both the absolute and relative
states; in comparison, formulations which decouple the absolute and relative estimation attribute all
motion of the relative dynamics as the motion of only the Follower spacecraft.

As a note, it can be shown that the incremental absolute dynamics δi defined in Equation (15) are
exactly equal to (26) when the vectors {ri,ρi j} are replaced with {r̃i,δi}. This makes sense as the
incremental absolute dynamics of agent(i) are just the relative motion of the spacecraft with respect
to the nominal spacecraft location.

As a comparator, an estimator was designed based on the more conventional approach which
decouples the absolute and relative estimation.3, 6, 8 This filter is described as a “Leader-Linearized”
extended Kalman filter or LL-EKF in the text; the incremental approach outlined in this work is
described as an incremental Kalman Filter or I-KF for the remainder of this work. By assuming the
position of the leader is known, Equation (26) completely describes the nonlinear relative dynamics.
An estimate of ρi j can be generated by implementing an EKF, centered around the known leader
position ri. This section provides a comparison between the methods with a focus on benefits of the
incremental architecture.

Incremental Measurement Equations

A transformation of the nonlinear measurement equations into the incremental domain must be
completed to provide an incremental measurement (with respect to the nominal) to the Kalman filter.
For clarity, a derivation of the CDGPS-specific incremental measurement function is presented here.
Typically, the use of CDGPS in real applications requires the estimation of additional GPS-specific
parameters that are not related to the architecture-focused arguments of this paper. For example,
the impact of clock and transmitter biases is potentially large for real applications; however, such
effects will impact both filters approximately evenly. Instead, the focus of this analysis is on the
performance differences due strictly to the nonlinear measurement model and dynamics, which
couple the relative and absolute state dynamics.

For the absolute GPS ranging case, a simple “range-plus-noise” model is used for the observed
phases from the kth GPS satellite:

φ
k
i = ||rk

GPS−ri||+wk
φ = ||rk

GPS− (r̃i +δi)||+wk
φ (27)

For a pair of satellites, the differential phase observed is therefore modeled as

∆φ
k
i j = ||rk

GPS−ri||− ||rk
GPS−r j||+wk

∆φ (28)
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where wk
∆φ

is the noise associated with that signal. Substituting in the expression for r j in terms of
ρi j yields:

∆φ
k
i j = ||rk

GPS−ri||− ||rk
GPS− (ri +ρi j)||+wk

∆φ (29)

Notably, this expression of a relative position measurement is dependent on the absolute position
of the ith spacecraft in addition to the relative state. Once again, the presence of the absolute states
in this expression couples the absolute and relative states, and results in inconsistencies when the
absolute states are ignored.

This nonlinear measurement function is linearized about the nominal expected measurement by
differencing the expected and corrected measurement functions:

h(x) = h(x̃+x)−h(x̃) (30)

Re-writing this in terms of the incremental states δi and δρi j yields

∆φ̃
k
i j = ||rk

GPS− (r̃i)||− ||rk
GPS− (r̃i + ρ̃i j)||+wk

∆φ (31)

∆φ
k
i j = ||(rk

GPS− r̃i)−δi||− ||(rk
GPS− r̃i−δi− ρ̃i j)−δρi j)||+wk

∆φ (32)

To use this formulation in a Kalman filter, it is required to take partials of this measurement equation
with respect to the incremental states. In this sense, the measurement model is linearized about the
expected nominal measurement:

δ∆φ
k
i j = ∆φ

k
i j(x)−∆φ

k
i j(x̃) (33)

Additionally, we note the definition of the derivative of a differential 2-norm with respect to a vector
in it as given by the Matrix Cookbook:

∂

∂x
||x−a||= x−a

||x−a||
(34)

which is simply the unit vector from a to x (otherwise referred to as the “line-of-sight” (LOSx
a)

vector). Next, we apply this to the set of states to yield the following non-zero partials:

∂∆φ k
i j

∂δi
=−

δi− (rk
GPS− r̃i)

||δi +(rk
GPS + r̃i)||

−
(rk

GPS− r̃i− ρ̃i j)−δρi j)

||(rk
GPS− r̃i− ρ̃i j)−δρi j)||

= LOSk
i −LOSk

j (35)

∂∆φ k
i j

∂δρi j
=−

(rk
GPS− r̃i− ρ̃i j)−δρi j)

||(rk
GPS− r̃i− ρ̃i j)−δρi j)||

= LOSk
i (36)

These are combined into the matrix of measurement function partials for k = 1 . . .N CDGPS mea-
surements as:

H∆ =
[
(LOSi−LOS j) 0N×3 LOS j 0N×3

]
(37)

Likewise, the measurement partials for the absolute state are computed as:

Habs =
[
LOSi 0N×9

]
(38)
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Table 1: Simulation parameters of the lead spacecraft and noise models.

Parameter Value

SMA 6,947 km
Eccentricity 0.01
Inclination 20◦

RAAN 20◦

Argument of Perigee 0.0◦

True Anomaly 0.0 ◦

(a) Lead spacecraft orbital elements.

Parameter Value

Qr 0m
Qṙ 0m/s
Rφ 1×10−3m
Rδφ 1×10−6m

(b) Noise coefficients used in
simulation.

Simulation Parameters

To evaluate the effectiveness and benefits of the incremental architecture, the aforementioned
filter was run over a set of various formation baselines and compared against the traditional EKF
formulation. The “leader” spacecraft orbital elements can be found in Table 1a, while the relative
offset ρ̃12 of the follower spacecraft is only considered in the along-track, curvilinear direction. Per
the previous discussion measurement uncertainty, these results do not consider the presence of iono-
spheric delays, clock drifts, or other accuracy-degrading effects found in real CDGPS applications;
the numerical accuracies of the filters presented herein do not correspond to expected on-orbit ac-
curacies. Additionally, the assumed sensor accuracies and filter noise tuning parameters are listed
in Table 1b.

Finally, note that continuous-time formulations of the dynamics and estimation algorithms have
been discussed, but discrete-time versions were implemented for all simulations in this paper. The
filters were run with an update rate of 1 Hz.

Performance Metrics

To demonstrate the effects of both linearization and modeling error, the relative state estimates for
both filters were characterized over a range of baselines and measurement noises. Characterization
of filter performance is described in three components; the mean 2-norm of the state error calculated
over time, the mean 2-norm of the measurement residual, and the mean 2-norm of the linearization
error. Here, the mean position and velocity errors are defined in terms of the RMS position and
velocity errors:

Mean
(
||x(i)− x̂(i)||2

)
, ∀i ∈ 1 . . .T (39)

The mean linearization error for filter states is given by the difference between the nonlinear prop-
agation of the prior states and the value of the predicted states using the linearized state transition
matrix:

f̄e = Mean
(
|| f (x̃(i)+x(i))− f (x̃(i))−Φx(i)||2

)
, ∀i ∈ 1 . . .T (40)
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Likewise, the mean measurement linearization error is given by:

h̄e = Mean
(
||h(x̃(i)+x(i))−h(x̃(i))−Hx(i)||2

)
, ∀i ∈ 1 . . .T (41)

These linearization errors represent the difference between the linearized dynamics, which are used
to propagate the filter covariance matrix, versus the true dynamics which can be used during state
propagation in the filter. Large linearization errors are associated with poor filter performance.15

Numerical Observability Analysis

The first step of any filter evaluation is to determine whether or not the states estimated by a
filter are observable given the system dynamics and measurements. Many have attempted to define
measures of observability for nonlinear systems. A conceptual benefit of the incremental state ar-
chitecture is that the incremental state dynamics should remain “more linear” than leader-linearized
architectures. However, the true nonlinear dynamics of the system are still re-linearized over time,
yielding a time-varying linear system about the nominal states.

Observability of the states over a specified time horizon M can be found by using the Information
Matrix:5

WO =
M

∑
i=1

Φ(tM, ti)T HT R−1HΦ(tM, ti) (42)

For observability, the eigenvalues of this matrix must be positively bounded above and below by
finite numbers. Additionally, the rank of this matrix indicates the number of observable directions
associated with the system. To analyze the observability of the presented I-KF algorithm, the infor-
mation matrix was computed using the linearized state transition dynamics and measurement matrix
at each time over two orbits for an incremental filter using only the relative CDGPS measurements
and for a filter using both the CDGPS and absolute GPS measurements. At each time, the maximum
and minimum eigenvalues of the respective information matrices was computed along with the ma-
trix rank. These results are captured in Figure 2. Provided both absolute and relative measurements,
the system is fully observable as is expected. Without absolute measurements, the filter states are
not fully observable; however, there is limited observability of the absolute states are observable
with only relative information. This result echoes the results of Psiaki, which found that relative
position measurements under J2-perturbed gravity dynamics could yield full estimates of the abso-
lute positions and velocities of both spacecraft. Our assumption of simple two-body, inverse-square
gravity eliminates this observability for the same reasons as those mentioned by Psaiki.9 In the
orbit-element space, there is an infinite number of orbits with varying right ascensions that produce
identical relative dynamics.

As a result of this analysis, the remaining numerical simulations are computed using a version of
the I-KF that includes measurements of the absolute GPS phases to ensure full observability.
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Figure 2: Evaluation of the Information Matrix properties as more measurements are combined.
Red lines are for the filter run without absolute measurements, where the

Perfect Nominal Information

Minimizing the departure from nonlinearity and the size of states estimated by the filter is a key
motivator behind the incremental architecture. To demonstrate this specific benefit of incremental-
ization, both the I-KF and the LL-KF are provided with ground truth as the nominal about which
the dynamics are linearized; for the I-KF, this includes the ground truth of the follower spacecraft
state. Under these conditions, estimation error is primarily driven by linearization error and model
inaccuracy. To ensure that the results are comparable, both filters are provided with identical differ-
ential phase measurements with noises provided by Table 1b and initialized with identical states in
the inertial frame.

A key underlying assumption behind the incremental linearization scheme is that the linearization
error drives filter accuracy. However, this is primarily the case for filters using extremely accurate,
precise measurements; when measurement noise is high, errors from linearization and departures
from linearity are “washed out” by measurement noise. To demonstrate this effect, filter accuracy
for position and velocity states is compared for various baselines and levels of measurement noise.
Measurement noise levels are represented using the multiplier λ on the assumed variances listed in
Table 1b. The results of this analysis for λ = {1,10,100,1000} are shown in Figure 3

Both filters feature similar relative positioning accuracies, which remain almost constant as the
baseline grows and which scale log-linearly with increasing noise multipliers. This is consistent
with the measurement model, which provides a direct estimate of the relative position for both
filters. The impact of the incremental linearization is most apparent in the error behavior of the
velocity states, which are inferred by each filter from the dynamics. The leader-linearized filter,
which linearizes the follower velocity about the chief, sees its estimate accuracy degrade as the
separation distance increases even with extremely high precision measurements. The incremental
filter, on the other hand, remains sensitive to noise but is invariant to the baseline. Notably, the
I-KF appears slightly more resistant to scaling with the quantity of measurement noise than the
LL-KF. One explanation for this is the more precise velocity estimate provided by the I-KF’s more
consistent dynamical model, which allows the I-KF to weight its internal model more precisely than
the LL-KF.

The performance metrics plotted in Figure 4 demonstrate the variation of linearization error in the
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(a) Orbit-average RMS position error comparison. (b) Orbit-average RMS velocity error comparison

Figure 3: The I-KF (blue) provides superior minimization of both position and velocity linearization
errors across all values of baseline separation and noise (λ = {1,10,100,1000}) by up to an order
of magnitude in comparison to the LL-KF (orange).

(a) Orbit-average RMS position lineariza-
tion error comparison.

(b) Orbit-average RMS velocity lineariza-
tion error comparison

(c) Orbit-average RMS measurement lin-
earization error comparison.

Figure 4: Comparison of incremental (blue) and leader-linearized (orange) filter linearization errors
with the formation baseline and level of measurement noise, with line-types representing different
measurement noise levels. The I-KF linearization errors suffer from numerical instability due to
their small magnitude.

position and velocity states for both filters as the baseline and level of measurement noise increases.
Over all baselines, the leader-linearized filter suffers from substantially higher levels of linearization
error in both its state and measurement models, whereas the incremental filter’s small relative states
result in extremely consistent linearizations and therefore small linearization errors. In all three
cases, the I-KF experiences a lower level of both measurement and prediction linearization error
while producing similar or better performance than the LL-KF.

The consistency of the incremental filter with respect to the true dynamics and measurement mod-
els is further demonstrated by evaluating the pre- and post-fit residuals, as shown in Figure 5 for a
1km baseline separation. In both cases, the incremental filter produces residuals that are zero-mean
and normally distributed; by comparison, the residuals produced by the leader-linearized approach
demonstrate both biases and dynamics as a result of the unacknowledged coupling between absolute
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and relative states. These results drive the error dynamics shown in Figures 6 and 7, which demon-
strate the time-history errors for the 10 kilometer baseline, λ = 1,000 case and their associated
covariances.

The error trajectories for the leader-linearized filter clearly show evidence of the mis-modeled
dynamics, and regularly push their 1-σ covariance bounds. At the same time, the incremental-
linearized filter results show not only two to three orders of magnitude improvement in accuracy,
but also tighter covariances in the relative states despite the large variances in the absolute δi states.
This suggests two things: first, that the I-KF dynamics and measurement models more accurately
capture the true behavior of the system; second, that the inclusion of coarsely-estimated absolute δi

states does not adversely affect the accuracy of the δρ states.

(a) Prefit residuals for both filters (b) Post-fit residuals for both filters.

Figure 5: Post-fit measurement residuals for the I-KF (blue) and LL-KF (red) for ρ =10,000m,
λ=1,000. Black lines indicate 1-σ covariance regions. Note that the LL-KF severely violates its
pre- and post-fit covariance bounds due to model inconsistencies.

Imperfect Nominal Information

A major benefit of the incremental estimation architecture is the ability to compensate for dy-
namic mis-modeling due to errors in the leader inertial position. Here, the impact of mis-modeled
nominal positions is evaluated by linearizing both filters about nearby two body orbits derived from
randomly perturbing the initial position and velocity:

r̃i = ri +κν̂ , r̃i = ri +
κ

100
η̂ (43)

where κ denotes the initial offset magnitude and ν̂ , η̂ are unit-norm vectors with randomly drawn
components. These nearby reference orbits are then propagated forward in time and provided as
nominal states for two I-KFs: one which includes the absolute δi states, and one which assumes
that these states are known perfectly (i.e., that r̃i = ri). This model is primarily pedagogical, but
reflects scenarios in which an inaccurate nominal orbit is available from other ground- or space-
based sources. An example of such a scenario is the use of Two-Line Element Sets as an on-board
ephemeris, which is a common practice among cubesat groups which lack native orbit determination
capabilities.

15



(a) Relative position estimate errors. Shaded areas represent
the 2-σ covariance bounds for the estimate error.

(b) I-KF (left, blue) and LL-KF (right, orange) velocity errors
and 2-σ bounds for velocity error.

Figure 6: Comparison of incremental (blue, left) and leader-linearized filter (red, right) errors for
ρ= 10,000m, λ=1,000 case. Shaded regions indicate 2-σ covariance bounds, which vary with
the geometric dilution of precision (GDOP) and appearance/disappearance of GPS measurements
for both filters. Note the improvement of performance by two orders of magnitude in the relative
position states and three orders of magnitude in the velocity states.

The δ - states of the incremental architecture can be interpreted as directly attempting to correct
this class of incorrect nominals. To demonstrate this, the filters of the previous section were run
again with perturbed nominal information to varying degrees. The resulting RMS position error and
RMS velocity errors were calculated for the final orbit of each scenario, shown in Figure 8.

At all points, the incremental architecture provides superior accuracy to the leader-linearized
filter, and its performance is essentially invariant to mis-modeled absolute reference positions. This
loss of accuracy is analogous to the long-baseline case demonstrated in Figure 4; in this case, the
LL-KF becomes inconsistent due to ignoring the potential for errors on the absolute state and their
coupling into the relative dynamics.
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(a) EKF Position errors. Shaded areas represent the
1-σ covariance bounds for the estimate error.

(b) EKF Velocity errors. Shaded areas represent
1-σ bounds for velocity error.

Figure 7: Absolute δ errors over a simulation window for a baseline of 10,000m. Shaded areas
represent 1-σ regions. Note that covariance bounds on the position and velocity are orders of
magnitude larger than those for the relative states in Figure 6.

Figure 8: Variation of the LL-KF (red) and I-KF (blue) mean norm errors versus the magnitude of
the nominal initial disturbance. Across all disturbance values, the I-KF outperforms the LL-KF.

SUMMARY AND CONCLUSION

The theory of “incremental” linearization for Kalman filtering is discussed to highlight its ability
to accurately incorporate both absolute and relative measurements for improved numerics. The cou-
pling of the absolute and relative dynamics was also shown to improve the relative estimation error.
When only the relative state is considered, all uncertainty of the relative dynamics/measurement is
forced onto the follower spacecraft. The dynamics coupling allows the uncertainty of the leader to
be correlated to the relative state and also allows high-precision relative measurements to improve
absolute state estimates. A second study analyzed the error associated with linearizing the dynam-
ics and measurement equations across the entire formation was studied. Leader-linearized systems
have similar position estimation performance with respect to self-linearized systems up to ∼1km
separation distances. However, the relative velocity estimates are significantly degraded in all cases
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which can drastically increase fuel usage.
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